Jak obliczyć długość okrągłej liny

Autor: John Webb
Data Utworzenia: 14 Sierpień 2021
Data Aktualizacji: 16 Listopad 2024
Anonim
[1.6/s.8/ZR2OE] Oblicz długość wektora AB, jeśli:
Wideo: [1.6/s.8/ZR2OE] Oblicz długość wektora AB, jeśli:

Zawartość

Lina to odcinek linii w okręgu, który biegnie od jednego punktu na obwodzie do drugiego. W przeciwieństwie do siecznej linii, struna jest całkowicie zawarta w okręgu. Istnieją dwa sposoby, aby znaleźć długość L łańcucha, a to, którego użyjesz, będzie zależeć od informacji dostępnych w pytaniu.

Jeśli znasz promień r okręgu i środkowy kąt c, możesz użyć następującego wzoru, aby znaleźć L: L = 2r * sin (c / 2)

Jeśli znasz promień i odległość d do środka okręgu, oto wzór: L = 2 * sqrt (r ^ 2-d ^ 2), gdzie „sqrt” oznacza „pierwiastek kwadratowy z”.

Promień i kąt środkowy

Krok 1

Podziel środkowy kąt przez dwa. Jeśli promień r wynosi 10, a kąt środkowy c wynosi 30 °, zacznij od podzielenia 30 przez 2: 30/2 = 15.


Krok 2

Znajdź sinus wyniku „Kroku 1”. W tym przykładzie poszukaj w kalkulatorze „sinus (15)”: sinus (15) = 0,65.

Krok 3

Pomnóż promień przez 2. W tym przykładzie: 2 * 10 = 20.

Krok 4

Pomnóż wyniki z kroków 2 i 3, aby znaleźć długość łańcucha. W tym przykładzie otrzymamy: 0,65 * 20 = 13.

Promień i odległość od środka

Krok 1

Wyrównaj do kwadratu odległość d od środka struny do środka koła. Jeśli promień r wynosi 3, a odległość d jest równa 2, zacznij od kwadratu 2: 2 ^ 2 = 4.

Krok 2

Kwadrat podany promień. W tym przykładzie: 3 ^ 2 = 9.

Krok 3

Odejmij wynik z „kroku 1” od wyniku z „kroku 2”. W tym przykładzie odejmij 4 od 9: 9 - 4 = 5.

Krok 4

Wyodrębnij pierwiastek kwadratowy z wyniku „Kroku 3”. Znajdź pierwiastek kwadratowy z 5: rq (5) = 2,23606798

Krok 5

Pomnóż wynik „kroku 4” przez 2, aby znaleźć długość ciągu: 2 * 2,23606798 = 4,47213596.